Appl. Phys. Express 1 (2008) 121501 (3 pages)  |Previous Article| |Next Article|  |Table of Contents|
|Full Text PDF (792K)| |Buy This Article|

Optimization of the Display Parameters of a Room Temperature Twisted Nematic Display Material by Doping Single-Wall Carbon Nanotubes

Ravindra Dhar1,2, Abhay Shanker Pandey2, Manoj Bhushan Pandey1, Sandeep Kumar3, and Roman Dabrowski4

1Physics Department, University of Allahabad, Allahabad 211002, India
2Ewing Christian College, University of Allahabad, Allahabad 211003, India
3Raman Research Institute, C. V. Raman Avenue, Bangalore 560080, India
4Institute of Applied Sciences and Chemistry, Military University of Technology, Warsaw 00-908, Poland

(Received September 7, 2008; accepted October 28, 2008; published online November 28, 2008)

Single-wall carbon nanotubes (SWCNTs) have been doped in the nematic matrix of a room temperature liquid crystalline material 4-(trans-4'-n-hexylcyclohexyl)isothiocyanatobenzene (6CHBT). Effect of SWCNTs doping on various display parameters, namely, threshold voltage, dielectric anisotropy, and splay elastic constant has been studied using electro-optical and dielectric spectroscopy. The nematic phase supports alignment of SWCNTs parallel to the nematic director. On the other hand, the presence of SWCNTs improves local orientational ordering of molecules in the nematic phase. Consequently, the threshold voltage required to switch the molecules from planar (bright state) to homeotropic (dark state) configuration is substantially reduced in the presence of the SWCNTs. ©2008 The Japan Society of Applied Physics

URL: http://apex.jsap.jp/link?APEX/1/121501/
DOI: 10.1143/APEX.1.121501


|Full Text PDF (792K)| |Buy This Article| Citation:


References | Citing Articles (15)

  1. Nanotechnology 2008: Materials, Fabrication, Particles and Characterization, Proc. Nano Science and Technology Institute, Cambridge, MA, USA (CRC Press, 2008) p. 1.
  2. S. Kaur, S. P. Singh, A. M. Biradar, A. Choudhary, and K. Sreenivas: Appl. Phys. Lett. 91 (2007) 023120[AIP Scitation].
  3. S. Kumar and H. Bisoyi: Angew. Chem., Int. Ed. 46 (2007) 1501.
  4. S. Kumar, S. K. Pal, P. S. Kumar, and V. Lakshminarayanan: Soft Matter 3 (2007) 896.
  5. Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi: Appl. Phys. Lett. 81 (2002) 2845[AIP Scitation].
  6. Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West: Appl. Phys. Lett. 82 (2003) 1917[AIP Scitation].
  7. C. I. Cheon, L. Li, A. Glushchenko, J. L. West, Y. Reznikov, J. S. Kim, and D. H. Kim: SID Int. Symp. Dig. Tech. Pap. 36 (2005) 1471.
  8. F. Haraguchi, K. Inoue, N. Toshima, S. Kobayashi, and K. Takotoh: Jpn. J. Appl. Phys. 46 (2007) L796[JSAP].
  9. R. Dhar, R. Verma, M. C. Rath, S. K. Sarkar, V. K. Wadhawan, R. Dabrowski, and M. Tykarska: Appl. Phys. Lett. 92 (2008) 014108[AIP Scitation].
  10. P. Sarkar, P. Mandal, S. Paul, R. Paul, R. Dabrowski, and K. Czuprynski: Liq. Cryst. 30 (2003) 507.
  11. S. L. Srivastava and R. Dhar: Ind. J. Pure Appl. Phys. 29 (1991) 745.
  12. R. Dhar: Ind. J. Pure Appl. Phys. 42 (2004) 56.
  13. M. B. Pandey, R. Dhar, V. K. Agrawal, R. Dabrowski, and M. Tykarska: Liq. Cryst. 31 (2004) 973.
  14. M. Gupta, R. Dhar, V. K. Agrawal, R. Dabrowski, and M. Tykarska: Phys. Rev. E 72 (2005) 021703[APS].
  15. R. Dhar, M. Gupta, V. K. Agrawal, and S. Kumar: Phase Transitions 81 (2008) 459.
  16. I. Dierking, G. Scalia, and P. Morales: J. Appl. Phys. 97 (2005) 044309[AIP Scitation].
  17. W. Maier and G. Meier: Z. Naturforsch. A 16 (1961) 262.
  18. H. Kresse: in Advances in Liquid Crystals, ed. G. H. Brown (Academic Press, New York, 1983) Vol. 6, p. 109.
  19. S. L. Srivastava and R. Dhar: Ind. J. Pure Appl. Phys. 37 (1999) 891.
  20. D. M. F. Edwards and P. A. Madden: Mol. Phys. 48 (1983) 471.
  21. R. Dhar, M. Gupta, V. K. Agrawal, and M. K. Singh: Phase Transitions 81 (2008) 341.

|TOP|  |Previous Article| |Next Article|  |Table of Contents| |APEX Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information