Appl. Phys. Express 2 (2009) 046503 (3 pages)  |Previous Article|  |Table of Contents|
|Full Text PDF (3206K)| |Buy This Article|

A Traveling Wave Type of Piezoelectric Ultrasonic Bidirectional Linear Microactuator

Dongming Sun, Sheng Wang, Junpei Sakurai, Seiichi Hata, Kee-Bong Choi1, and Akira Shimokohbe2

Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259 R2-40 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
1Intelligent Machine Systems Research Center, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea
2Emeritus professor, Tokyo Institute of Technology, 4259 R2-37 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

(Received March 3, 2009; accepted March 16, 2009; published online April 3, 2009)

A piezoelectric ultrasonic microactuator is presented, with a cylindrical stator and slider structure. The length and diameter of the microactuator are about 10 and 1.5 mm, respectively. The stator consists of two piezoelectric ceramic (PZT) tubes connected by a thin film metallic glass (TFMG) pipe, which is fabricated using the rotating magnetron sputtering technique. Traveling wave propagation is generated on the TFMG pipe in finite element method (FEM) simulations and also observed in the measurement. Bi-directional motion of the slider was observed around 600 kHz, and the maximum velocity was about 40 mm/s at 25 V. ©2009 The Japan Society of Applied Physics

URL: http://apex.jsap.jp/link?APEX/2/046503/
DOI: 10.1143/APEX.2.046503


|Full Text PDF (3206K)| |Buy This Article| Citation:


References

  1. S. Ueha and Y. Tomikawa: Ultrasonic Motors: Theory and Applications (Clarendon, Oxford, U.K., 1993).
  2. K. Uchino: Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic, Boston, MA, 1997).
  3. S. Dong, L. Yan, N. Wang, D. Viehland, X. Jiang, P. Rehrig, and W. Hackenberger: Appl. Phys. Lett. 86 (2005) 053501[AIP Scitation].
  4. X. Zhang, Y. Zheng, and J. Hu: Appl. Phys. Lett. 92 (2008) 024109[AIP Scitation].
  5. A. M. Flynn, L. S. Tavrow, S. F. Bart, R. A. Brooks, D. J. Ehrlich, K. R. Udayakumar, and L. E. Cross: IEEE J. Microelectromech. Syst. 1 (1992) 44.
  6. S. Dong, K. Uchino, L. Li, and D. Viehland: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 (2007) 1240.
  7. J. Friend, L. Yeo, and M. Hogg: Appl. Phys. Lett. 92 (2008) 014107[AIP Scitation].
  8. L. Luo, H. Zhu, C. Zhao, H. Wang, and H. Luo: Appl. Phys. Lett. 90 (2007) 052904[AIP Scitation].
  9. I. V. Ostrovskii and P. Das: Appl. Phys. Lett. 70 (1997) 167[AIP Scitation].
  10. T. Sashida: Oyo Buturi 51 (1982) 713 [in Japanese].
  11. M. Kuribayashi, S. Ueha, and E. Mori: J. Acoust. Soc. Am. 77 (1985) 1431[AIP Scitation].
  12. W. Panusittikorn, M. C. Lee, and P. I. Ro: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 (2004) 917.
  13. A. Minikes, R. Gabay, I. Bucher, and M. Feldman: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 (2005) 1565.
  14. N. Tanaka and U. Kikushima: JSME Int. J., Ser. 3 34 (1991) 159.
  15. N. Tanaka and U. Kikushima: JSME Int. J., Ser. 3 35 (1992) 236.
  16. T. Shigematsu and M. Kuribayashi-Kurosawa: IEEJ Trans. Sens. Micromach. 126 (2006) 166.
  17. A. Inoue, K. Ohtera, K. Kita, and T. Masumoto: Jpn. J. Appl. Phys. 27 (1988) L736[JSAP].
  18. Y. Liu, S. Hata, K. Wada, and A. Shimokohbe: Jpn. J. Appl. Phys. 40 (2001) 5382[JSAP].
  19. H. W. Jeong, S. Hata, and A. Shimokohbe: J. Microelectromech. Syst. 12 (2003) 42.
  20. T. Fukushige, S. Hata, and A. Shimokohbe: J. Microelectromech. Syst. 14 (2005) 243.

|TOP|  |Previous Article|  |Table of Contents| |APEX Home|
Copyright © 2013 The Japan Society of Applied Physics
Contact Information